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Abstract

This paper discusses a best-practice representation of uncertainty in satellite remote
sensing data. An estimate of uncertainty is necessary to make appropriate use of the
information conveyed by a measurement. Traditional error propagation quantifies the
uncertainty in a measurement due to well-understood perturbations in a measurement
and auxiliary data — known, quantified “unknowns”. The underconstrained nature of
most satellite remote sensing observations requires the use of various approximations
and assumptions that produce non-linear systematic errors that are not readily as-
sessed — known, unquantifiable “unknowns”. Additional errors result from the inability
to resolve all scales of variation in the measured quantity — unknown “unknowns”. The
latter two categories of error are dominant in underconstrained remote sensing re-
trievals and the difficulty of their quantification limits the utility of existing uncertainty
estimates, degrading confidence in such data.

This paper proposes the use of ensemble techniques to present multiple self-
consistent realisations of a data set as a means of depicting unquantified uncertainties.
These are generated using various systems (different algorithms or forward models)
believed to be appropriate to the conditions observed. Benefiting from the experience
of the climate modelling community, an ensemble provides a user with a more com-
plete representation of the uncertainty as understood by the data producer and greater
freedom to consider different realisations of the data.

1 Introduction

All measurements are subject to error, the difference between the value obtained and
the theoretical true value (or measurand). Errors are traditionally classified as “random”
or “systematic” depending on if they would have zero or non-zero mean (respectively)
when considering an infinite number of measurements of the same circumstances.
The uncertainty on a measurement describes the expected magnitude of the error by

8510

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

AMTD
8, 8509-8562, 2015

Uncertainty
estimation in satellite
remote sensing data

A. C. Povey and
R. G. Grainger

Title Page
Abstract Introduction
Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/8509/2015/amtd-8-8509-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/8509/2015/amtd-8-8509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

characterising the distribution of error that would be found if the measurement was
infinitely repeated. These concepts are sketched in Fig. 1.
Uncertainty is a vital component of data as it provides

— a means to efficiently and consistently communicate the strengths and limitations
of data to users, and

— a metric with which to compare and consolidate different estimates of a measur-
and.

The importance of quoting the uncertainty on any measurement and the thorough val-
idation of both are well accepted, but the terms “uncertainty” and “validation” are used
inconsistently.

This paper aims to present a succinct outline of uncertainty and validation and their
best-practice application to satellite remote sensing of the environment. Satellite re-
mote sensing is a sequence of processes that estimate a geophysical quantity from
a measurement of the current or voltage produced by a space-based detector in re-
sponse to the radiation incident upon it. Each step in processing, formally described in
Table 1, is subject to various sources of error. This formalisation was applied as early
as 1970 for Nimbus 4 data processing (G. Peskett, personal communication, 2015), but
did not enter the peer-reviewed literature until much later (Ducher, 1980).

Standardised methods for uncertainty estimation can be insufficient for satellite re-
mote sensing data as they assume a well-constrained measurement where the sources
of error are established — known, quantifiable unknowns. The dominance of systematic
errors in satellite remote sensing data introduce known, unquantified unknowns (such
as the impact of cloud filtering) and unknown unknowns (such as variability on scales
smaller than that observed).

Ensemble techniques, a method widely used in the weather and climate communi-
ties, provide multiple self-consistent realisations of a data set as a means of repre-
senting non-linear error propagation and variations resulting from ambiguous repre-
sentations of natural processes. This paper argues that such techniques provide an
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effective means to represent and communicate the uncertainty resulting from the latter
two categories of “unknowns” affecting satellite remote sensing data.

The discussions to follow aim to be accessible to both users and producers of satel-
lite remote sensing data and the issues considered apply (theoretically) to all satellite-
based instruments. The relative importance of each point will depend on the precise
technique considered and the concepts will not be considered for all possible measure-
ments. lllustrative examples will primarily draw from the characterisation of aerosol,
cloud, and the surface with a hypothetical nadir-viewing radiometer in a low Earth orbit
(~ 800 km) with a spatial resolution of ~ 1 km having bands in the visible and infrared.
This specification is typical of a number of past and existing instruments such as the
Along Track Scanning Radiometer (ATSR) series, the Advanced Visible High Reso-
lution Radiometer (AVHRR) series, and the Moderate Resolution Imaging Spectrora-
diometer (MODIS) on the Aqua and Terra platforms.

Section 2 outlines the accepted definition of uncertainty and the use of ensemble
techniques in characterising the distribution of systematic errors in satellite remote
sensing data. These are discussed with respect to specific sources of error in Sect. 3.
Retrieval validation is considered in Sect. 4. Section 5 discusses the importance of
qualitative information in the communication of uncertainty to data users while Sect. 6
summarises some conclusions and recommendations.

2 Representing uncertainty

2.1 Within retrieval theory

A generalised description of a retrieval technique is that it uses observations y and
auxiliary information b to find some quantities of interest x that satisfy

y=F(x,b) +e, (1)
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which is practically performed by evaluating
x=G(y,b), (2)

where the forward model F approximates the process by which the instrument and
environment translate the desired quantities x into the observation y and whose for-
mulation will depend on the choice of basis x. The error in the measurements and
forward model is denoted € and the inverse function G is some statistical or approx-
imate inversion of the forward model, for which many schemes exist (e.g. Rodgers,
2000; Twomey, 1997).

If a hat denotes the theoretical true value of a quantity or function, the error in the
retrieval is given by € = x — x. It is affected by sources that fall between three extremes:

— Random fluctuations in the measurement, such as thermal fluctuations and shot
noise. These are unavoidable but generally linear and (at least approximately)
normally distributed such that the uncertainty can be represented by the standard
deviation of their distribution. When using Eq. (2), the uncertainty resulting from
random errors in multiple measurements can be calculated using the standard
“propagation of errors” (Clause 5.1.2 of Working Group 1, 2008)

N 0G; 2
/
O'Xj = E <O'yl,6—yi> , (3)

i=1

where o, is the uncertainty in the jth element of x and N observations were
considered, which are assumed to have uncorrelated errors.

— Simplifications and approximations made in the technique. These errors are sys-
tematic and are unlikely to be quantified (as they would have been included in
the forward model if they were). Such errors are commonly characterised through
validation.
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— The degree to which the observation is representative of the situation it is pro-
posed to describe. These are especially important for satellite observations,
where measurements are averaged over some volume of the atmosphere that
does not necessarily correspond to the scale of physical perturbations, such as
turbulent mixing or cloud contamination.

These considerations compound when considering the uncertainty resulting from the
use of auxiliary parameters, b. If the uncertainty on the auxiliary parameters is well
known, it is straightforward to propagate it into the retrieval using Eq. (3) with the sub-
stitution y — b. However, the data may not map directly onto the defined state (e.g. ob-
servations at a different spatial resolution taken at a different sub-solar time), introduc-
ing additional error. If an auxiliary parameter is very poorly known, it may be preferable
to retrieve it as an additional element of x, though in doing so the problem may become
underconstrained (if it was not already). Even where it is possible to make additional
measurements, it is often necessary to input an independently retrieved quantity rather
than work from raw data.

2.2 Formal definition

The metrological community has prepared an extensive summary of best-practice in
the assessment of uncertainty in measurements — the Guide to the expression of un-
certainty in measurement (Working Group 1, 2008, known hereafter as the GUM). It
defines uncertainty as a

“parameter, associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand.”

This definition has been adopted by the European Space Agency’s (ESA) Climate
Change Initiative (CCI project teams, 2010).
In clause 0.4, the GUM states that an ideal method for evaluating uncertainty should
be universal, in that it is applicable to all types of data. The reported uncertainty should
8514

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

AMTD
8, 8509-8562, 2015

Uncertainty
estimation in satellite
remote sensing data

A. C. Povey and
R. G. Grainger

Title Page
Abstract Introduction
Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/8509/2015/amtd-8-8509-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/8509/2015/amtd-8-8509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

then be internally consistent, being directly derivable from the information that was
used in its calculation, and transferable, such that it can be input to subsequent cal-
culations. These are achieved by assuming that any probability distribution from which
errors are sampled can be accurately described by a single variance. If a series of N
observations x; are made, the mean is (x) = ﬁz;"ﬂx, with variance

o o Zia(xi-t)”

x) N -1 (4)

Clause 4.3 provides guidelines for determining a pseudo-variance when observations
are not repeated, such as where the measurand is known to fall between two limits.
With that, Eq. (3) can be evaluated for the equations used to derive the measurement
(outlined in clause 5).

2.3 Application to satellite remote sensing

These conventions apply equally to satellite remote sensing data but represent an im-
practical ideal that does not help an analyst fully represent their understanding of the
uncertainty in their data. This is due to the simplistic treatment of systematic errors.
Clause 3.2.4 of the GUM states that, “It is assumed that the result of a measurement
has been corrected for all recognized significant systematic effects and that every ef-
fort has been made to identify such effects.” While data producers put significant effort
into identifying systematic errors, their quantification can be a difficult and occasion-
ally impossible task. For such errors, it is unclear that their distribution is symmetric,
such that the emphasis on traditional error propagation contributes to many analysts
neglecting important systematic errors as they cannot be quantified with confidence
(Li et al., 2009; Kokhanovsky et al., 2010). This applies primarily to highly undercon-
strained observations. A few measurements of the radiation at the top of atmosphere
(TOA) cannot be used to deduce the intricate state of the atmosphere and surface in
the observed column without substantial simplification of the physics and/or additional
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information on the variation of the state. Systematic errors are produced where these
assumptions break down (e.g. using an inaccurate water vapour profile when evaluat-
ing measurements affected by water absorption).

The magnitude and nature of systematic errors experienced is a function of the state
observed. A common example is the differing treatment of land and sea surfaces. Av-
eraging adjacent retrievals will not necessarily combine errors sampled from the same
distribution. As the uncertainty of a retrieval is a function of the environment observed,
they must be ascertained on a pixel-by-pixel basis to be meaningful.

The basis chosen to describe a system also impacts the expression of uncertainty.
Consider the retrieval of cloud top temperature or pressure from measurements by
a nadir-viewing infrared radiometer (for a more detailed description, see King, 1992;
Fischer and Grassl, 1991; Schiffer and Rossow, 1983). The observed signal is the
radiance at TOA, which is converted (using the Planck function) into the radiating
temperature of the droplets at the top of the cloud. As that transform is non-linear,
a symmetric distribution of random error in the radiance will not be symmetric when
considering temperature, as sketched in Fig. 2. Similarly, the cloud top pressure is cal-
culated from the temperature by interpolating a meteorological profile. As temperature
varies linearly with height while pressure varies logarithmically, the distribution will be
further distorted in pressure space, in addition to the uncertainty introduced by the
meteorological profile.

If errors are expected to be small (as in the radiance to temperature transform), the
non-linearity will be minimal and a variance-based representation of error is sensible.
Otherwise, the distribution of error may be skewed or asymmetric such that one value is
insufficient to describe it. Ensemble techniques can provide the additional information
required to properly characterise the distribution of error.

2.4 Ensemble techniques

The standard error propagation techniques do not properly represent the distribution
of non-linear errors. In such situations, the uncertainty can be represented by the vari-
8516
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ation in an ensemble of individually self-consistent predictions. An example is that of
numerical weather prediction (NWP). Rather than predict the weather from the out-
put of a single model run, multiple runs are performed (Buizza et al., 2005) with each
initialised by a perturbed version of the initial state (the perturbations being consis-
tent with the uncertainty in the observations used). The weather is chaotic, such that
small changes in the input data produce significant and non-linear changes in the result
(Lorenz, 1965). The ensemble of forecasts captures the variability as an approximation
of the uncertainty in a forecast (Houtekamer and Lefaivre, 1997), such as the frac-
tion of model runs in which a given feature is observed, in a way that standard error
propagation cannot.

The representation of non-linear error propagation via ensembles is applicable to
satellite remote sensing observations. Components of the retrieval’s uncertainty can
be determined using an ensemble of retrievals where each member of the ensemble
adds a random perturbation to the measurements y and ancillary parameters b (in ac-
cordance with their respective error distributions). The feasibility of doing this in large-
scale processing is limited by computational cost so it is primarily useful as a method
to validate the calculated uncertainties.

Ensembles are also widely used in the climate modelling community (for example,
Flato et al., 2013; Crucifix et al., 2005; Meehl et al., 2000). Many processes cannot
be accurately modelled at the coarse resolutions practical for climate modelling. These
are parametrised, but there are many possible schemes and each has associated un-
quantifiable systematic errors. The uncertainty in climate models is approximated by
considering the diversity in an ensemble of models using different assumptions and
approximations.

Such ensembles are useful where a measurement does not fully constrain a prob-
lem. To illustrate the concept, consider estimating the volume of an aluminium bucket
knowing only its mass. As the density of aluminium is known and assuming the thick-
ness of metal used to make the bucket, the mass can be converted into a surface area.
The volume is then determined from the surface area by assuming the shape and
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height of the bucket. That choice of shape (i.e. the forward model) will greatly affect
how the retrieval interprets the mass measurement.

This is portrayed in Fig. 3. Each line represents a different forward model for con-
verting mass into volume. A slice (lines of the same colour) shows the impact of shape
on the form of the forward model. Looking through the slices (different colours of the
same line style) shows the impact of the assumed height. Note:

— When the bucket is assumed to have a height of 12 cm (purple), the three different
models produce consistent results between 0.15 and 0.3 kg. The error due to us-
ing an inappropriate model there will be small, but increases for masses > 0.3 kg.
The error is a function of the true state.

— For a height of 24cm (red) the models diverge greatly; a 0.32kg bucket could
have a volume between 0.10 and 11L. Thus, the use of an incorrect model will
introduce substantial error. The error is a function of the forward model’s parame-
ters.

— In this example the actual shape of the bucket is not known, so it is not possi-
ble to rigorously quantify the error resulting from the choice of forward model.
Without additional information, the results for a hemispherical bucket are just as
valid as a conical one despite their significantly different interpretations of the
data (e.g. a hemispherical bucket has a minimum mass for a given height whilst
a conical one does not).

The form of the ensemble will depend on its intended use and a priori knowledge. In this
example, the ensemble would be three estimates of the volume (one for each shape).
The uncertainty resulting from errors in the weight, density, and thickness would be
given separately for each ensemble member. If genuinely nothing was known about
the height, the ensemble could be extended to represent a range of heights. In reality,
some auxiliary information will exist that should constrain the values.

The standard deviation across ensemble members may be a useful proxy where
the models are consistent, as in the 12cm slice, but not generally. Non-linear errors
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can be most meaningfully described through an ensemble, with which many users al-
ready have extensive experience (Rayner et al., 2014). Ensemble techniques are uni-
versal, being a generalisation of the GUM’s techniques to a poorly constrained problem
(i.e. a well-constrained problem has a one-member ensemble). Each realisation of the
data is internally consistent and the ensemble presents a more complete understand-
ing of the data, as ambiguities are explicitly highlighted. The information is transferable
using the well-established techniques of the modelling community.

This example is artificial but illustrates the utility of ensemble techniques to satellite
remote sensing data:

— Retrievals of aerosol optical depth are strongly affected by the choice of aerosol
microphysical properties. Analogous to the choice of bucket shape, these prop-
erties alter the form of the forward model and introduce unquantifiable errors.
An ensemble can be produced by evaluating the observations with various mod-
els, as currently performed by the MISR and ORAC algorithms (Liu et al., 2009;
Thomas et al., 2009, respectively).

— A variety of techniques can be used to merge multiple satellite sensors into
a single, long-term product, such as the Jason-1 and 2 mean sea-level missions
(Ablain et al., 2015) or the SeaWiFS and MODIS Terra and Aqua ocean colour
data (Maritorena and Siegel, 2005). These correspond to the choice of bucket
height — a poorly constrained retrieval parameter.

— Retrieval parameters and auxiliary data have associated uncertainties. Where the
propagation of these is highly non-linear, they can be estimated via ensemble
techniques analogous to the NWP approach, as done by Liu et al. (2015). Rather
than present an ensemble of retrievals, Mears et al. (2011) produced an ensemble
of estimated errors (as perturbations about the measured value presume it is the
mean of the true distribution).

— Errors that are correlated over large temporal and/or spatial scales are impractical
to calculate and represent with traditional covariance matrices. Ensembles have
8519
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been used to represent these in SST products (Kennedy et al., 2011a, b), with
less problematic errors represented by separate uncertainty estimates.

In essence, the ensemble approach is useful for characterising the error resulting
from an incomplete description of the situation observed. At the expense of increased
data volume, an ensemble provides the user with

1. a more appropriate representation of the uncertainty resulting from the realisation
of the problem, and

2. the freedom to select the portrayal(s) of the data most appropriate to their pur-
poses.

An ensemble also facilitates the intercomparison of different methodologies, through
which techniques can be refined or rejected.

3 Evaluating errors in a satellite observation

Despite their extensive use in the community (and this paper), the classification of
errors as random or systematic is limited. A random error can appear to introduce
a systematic bias after propagation through a non-linear equation due to its asymmetric
distribution and the distribution of a systematic error has finite width. The use of these
terms is better understood as synonyms for the non-technical meanings of noise and
bias, respectively.

The GUM chose to eschew classification of error altogether, instead classifying un-
certainties as type A and B dependent on if they were calculated from an observed
frequency distribution (i.e. traditional statistical techniques) or an assumed probability
density function. This provides an important focus on the different techniques through
which uncertainty is calculated, but does not address the interest of data users in un-
derstanding the cause of errors in a measurement. The source of an error affects how
it is realised and its relative importance in the eyes of data producers and users. Five
classifications of error by source are proposed, which will be discussed in turn.
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3.1 Measurement errors

Measurement errors result from statistical variation in the measurand or random fluc-
tuations in the detector and electronics. To assess these accurately, it is important that
a measurement is traceable to a well-documented standard. This requires the straight-
forward (if not simple) comparison of an instrument to a thoroughly characterised ref-
erence. Further, the response of any instrument will evolve over time, necessitating the
periodic repeat of calibration procedures.

Satellite radiometers are characterised prior to launch (e.g. Hickey and Karoli, 1974;
Barnes et al., 1998; Tanelli et al., 2008), to varying levels of accuracy, providing a trace-
able assessment of uncertainty. However, the stresses of launch can irrevocably and
unpredictably alter the behaviour of an instrument, such that this assessment merely
provides a first guess of the performance in practice (e.g. Kummerow et al., 2000). It
is impossible to perform calibration in orbit analogous to the laboratory-based format.
Some instruments carry calibration sources to provide continual, in-situ evaluation (e.g.
Smith et al., 2012). Though designed to be more robust than the instrument itself, these
have been shown to have stability issues (Xiong et al., 2010). Hence, it is unreasonable
to expect a traceable assessment of uncertainty for a satellite-borne sensor analogous
to any ground-based instrument.

Vicarious methods of calibration can be used, whereby the response of the instru-
ment to a known Earth-bound stimulus is considered (e.g. Slater et al., 1996; Fougnie
et al., 2007; Powell et al., 2009; Kuze et al., 2014). For example, radiometers have
been calibrated by observing an area of the Libyan desert known to have a very sta-
ble surface reflectance over time (Smith et al., 2002). For some instruments, this is
the only direct calibration possible (Heidinger et al., 2003). Calibrations are periodi-
cally re-evaluated and new data sets released (e.g. the recent ATSR V1.2 or MODIS
L1B Collection 6). For such calibrations to be traceable, it is necessary to establish
international standard reference sites that are independently and regularly monitored.
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3.2 Parameter errors

Retrievals using satellite observations virtually always require auxiliary information as
there is insufficient information available to retrieve all parameters of the atmosphere
and surface simultaneously. For example, the accuracy of line-by-line radiative trans-
fer calculations depends upon the spectroscopic data used (see, for example, Fischer
et al., 2008). Parameters will be produced by an independent retrieval and have as-
sociated uncertainties. If uncertainty is reported via a standard deviation, it can be
propagated using Eq. (3). More complex uncertainties can be represented through an
ensemble.

3.3 Approximation errors

It is not always practical to evaluate the most precise formulation of a forward model.
For example, the atmosphere may be approximated as plane parallel to simplify the
equations or look-up tables (LUT) may be used rather than solving the equations of
radiative transfer. Such approximations will introduce error. Often known as “forward
model error” (Rodgers, 2000), it can be assessed by comparing the performance of the
full and simplified forward models with simulated data. These errors can be highly state-
dependent but should also be small (as otherwise the approximation was misguided),
such that it should be appropriate to quantify the maximum error and convert that into
an effective standard deviation (GUM Clause 4.3).

3.4 Resolution errors
3.4.1 Definition of the measurand

How a measurand is defined affects which errors are relevant. Summarising clause D.3

of the GUM, consider the use of a micrometer to measure the thickness of a sheet of

paper. As the sheet will not be uniform, the true value depends on the precise location

of the measurement. Hence, when measuring “the thickness of this sheet of paper”,
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the variation of thickness across the sheet is an additional source of error to be con-
sidered when estimating the uncertainty. This error can be neglected by defining the
measurand as “the thickness of this sheet of paper at this point”, but that is of little
practical use. Similarly, “the thickness of a sheet of paper from this supplier’ is a more
useful measurand, for which the error due to variations between different sheets would
also need to be considered.

A datum in a satellite product is understood to represent an average of some phys-
ical quantity over the observed pixel at a specified time. Compared to the situations
considered in the GUM, these suffer a number of important limitations:

1. It is not possible to redefine the scope of the measurand (i.e. changing from “this
sheet of paper” to “a sheet from this supplier”’) as that is prescribed by the optics
of the instrument. What will be called the resolution error derives from the inabil-
ity of the measurement to resolve the desired measurand. This generally results
from variations in the quantity on scales smaller than a pixel, analogous to the
variations in thickness over a sheet of paper.

2. The perturbations are not necessarily independent. For example, in the open
ocean it is reasonable to expect that mixing will homogenise SST over a pixel,
but in coastal waters variations in depth and sediment concentration introduce
spatially correlated perturbations that will not average to zero.

3. Unlike the thickness example, it is not possible to repeat the observation. Atmo-
spheric states evolve over minutes to hours and influence (to some extent) any
environmental observation such that two instruments can never strictly observe
the same state. This is unusual in the sciences, where experiments generally
accumulate statistical confidence through repeated measurement of equivalent
circumstances.

The last point can be addressed by averaging adjacent pixels from the same sensor.
When done with Level 1 data, this is known as superpixeling (Munechika et al., 1993).
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It is commonly used in aerosol retrievals to reduce measurement error (e.g. Sayer
et al., 2010a), as aerosols are assumed to vary over scales much larger than a pixel
(order 50km, Anderson et al., 2003). Such averaging is not valid in the presence of
cloud, which is fundamentally a stochastic feature with an extended region of influence
(Grandey and Stier, 2010).

When Level 2 data is averaged, the result is Level 3 data. Averages over hundreds of
kilometres and days to weeks are similar to the scales evaluated by climate models and
the volume of data is vastly more manageable. Such data are susceptible to additional
limitations:

— The definition of the measurand is even more important. It may appear sufficient to
describe a product as (for example) “average SST in March 2005 over 30-31°N
and 10-11°W”, but the satellite’s spatial sampling will greatly affect the value.
Comparison of satellite products to model outputs can only be successful if the
model is sampled as if observed by that satellite (so called “instrument simula-
tors”, e.g. Sayer et al., 2010b).

— Satellite products are only representative of the time they observe (Privette et al.,
1995). If the quantity has a diurnal cycle, the measurand should be described
as an average at a specific time. That time may evolve through a record due
to satellite drift, such that data from the beginning of such a record may not be
directly comparable to those at the end.

— Resolution errors are a function of the pixel size and the variability of the mea-
sured quantity. The independent pixel approximation (Chambers et al., 1997)
commonly used assumes a constant quantity at the pixel scale. While this ap-
proximation holds in many circumstances, it is not universally true and certainly
breaks down as pixels are aggregated to represent a larger spatial scale.

— For retrievals that use an a priori constraint, each retrieved value contains a con-
tribution from the a priori. When averaging, if the a priori is not “removed” from the
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value, it will contribute repeatedly to the average, biasing it. Neglecting covariance
between state vector elements, this can be done via

. x x 1 1
X,-=<—'2-—Z>/<—2‘—2>- (5)
o o o o

To account for covariance, see Eq. (10.47) of Rodgers (2000). The values x; can
then be averaged as desired, explicitly including the a priori value once.

3.4.2 Impact of sampling

The interaction of cloud with the radiation field is sufficiently complex and variable that
it is not generally possible to retrieve its properties simultaneously with the surface
and/or other atmospheric constituents. Hence, most atmospheric measurements are
pre-filtered for the presence of cloud via one of a plethora of empirical techniques (e.g.
Ackerman et al., 1998; Stowe et al., 1999; Pavolonis and Heidinger, 2004; Curier et al.,
2009). This constrains the retrieval to observations believed to be appropriate to the
forward model used.

The filtering process impacts the sampling of the product, as regions with persistent
cloud cover will be neglected. Level 3 products are particularly susceptible to these
sampling effects. The concept is also known as “fair-weather bias” as the exclusively
clear-sky conditions considered are not necessarily representative of the long-term
average conditions that the measurand purports to describe. Ensemble techniques
can be used to characterise this error either by demonstrating the changes in coverage
as a function of the cloud filter used or by explicitly considering cloudy conditions as an
alternative realisation of the system (for which the state vector will likely be different).

Filtering can remove exceptional events. Aerosol retrievals often assume all data with
optical thickness above some threshold are cloud contaminated, but it is possible for
dust or volcanic ash to achieve an optical thickness above any useful threshold. This
systematically removes high optical depths from long-term averages, producing a low
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bias in average products and failing to characterise the largest (and potentially most
important) events. Such limits should be stated within the product definition to make
this distinction clear.

3.5 System errors

The stochastic change in TOA radiance due to the presence of cloud (or other optically
thick layer such as smoke or volcanic ash) is a long-standing problem in satellite remote
sensing. The issue is that the forward model, F in Eq. (1), has a significantly different
form for each stochastic realisation of the environment. One realisation will be referred
to as a system.

If there is no a priori knowledge of which system is appropriate, the forward model
could be formed from the linear sum of all possible systems, e.g.

Y = aF gear sky(xa,ba) + bF ioud(Xp, Bp) + CFsmore(Xcs Be) ++-- + €, (6)

where a, b, c, ... are the weighting of each system, which sum to unity. Each system is
represented by a unique state x,, x,, X, ... and there may be degeneracies between
them (e.g. each state may quantify the surface reflectance). While this approach may
be successful for some multispectral observation systems, in most cases it makes an
underconstrained problem worse.

Another technique is to assume the measurements are of a specific system (i.e. one
of the weights is unity and the others are zero). The choice of system is based on prior
knowledge, usually relative values of radiances or their spatial variability (e.g. the cloud
flagging discussed in Sect. 3.4.2). However, the choice of thresholds is often application
dependent, leading to gross error (e.g. Sect. 3.2 of Holzer-Popp et al., 2015) as there
is a substantial difference between asking “Is this an observation of X?” and “Is this
observation suitable for analysis with my model of X?” The former desires an appraisal
of the state based on data; the latter seeks to minimise forward model errors.

An alternative approach is to perform a retrieval with each relevant system in turn
and choose a posteriori the best system (e.g. Levy et al., 2013). Ideally, the fit to the
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measurements would indicate a best choice of system, shown schematically in Fig. 4.
Difficulty emerges when multiple systems produce values with indistinguishable fits to
the measurements (e.g. the measurements can be fit equally well by a water cloud or
thick aerosol haze). In either case, analogous to the 24 cm slice of Fig. 3, an unquan-
tified error may be present due to deviations between the forward model and reality.
This manner of reporting an ensemble of all the systems evaluated allows the error to
be at least sampled.

3.6 Existing terminology

The combined impact of approximation, resolution, and system errors was defined as
“structural uncertainty” by Thorne et al. (2005). Their emphasis was that the choices
made by different investigators in the analysis of the same data can produce discrep-
ancies. The terminology proposed above clarifies the type of choices which introduce
such errors to an analysis and delineates by the manner in which they would be as-
sessed. Regardless, this paper would prefer “structural error” as it is the error that
is structural, not its uncertainty. The term “structural uncertainty” is used by Draper
(1995) to describe system errors, though with respect to statistical rather than physical
models.

4 Retrieval validation

Validation is a vital step in the production of any data set, confirming that the data
and methodology are fit for their purpose. Often thought of as the conclusion of data
generation, it provides guidance for future development of the algorithm and so is better
considered a step in the cycle of retrieval development (see Fig. 5). Validation should be
traceable and repeatable and can take two forms that will be discussed in this section:

— Internal validation — the comparison of measurements from a single instrument;
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— External validation — the comparison of measurements with correlative measure-
ments made by a different instrument.

These can be thought of as assessing the precision and accuracy of the retrieval,
respectively, and can establish that the methodology produces physically consistent
results. The process should demonstrate that new data are consistent with independent
results, estimate the relative error between the techniques considered, and show that
the predicted uncertainties accurately describe the distribution of that error.

This paper construes a validation as a comparison against real data only. There is
use in evaluating the performance of an algorithm against simulated data, but that is
considered a step in retrieval refinement (confirming it behaves as expected in con-
trolled conditions) rather than a validation.

4.1 External validation

Users will be most familiar with external validation — the comparison of observations
from two or more instruments. This focuses on quantifying the correlation and differ-
ence between data sets. While such validation activities are fundamental to the char-
acterisation and minimisation of systematic errors, they should not be confused with
a quantification of uncertainty. Validation techniques are neither universal (being de-
pendant on the collocation criteria), internally consistent (as external data are used),
nor transferable (being representative of only the conditions considered).

4.1.1 Weighting functions

When comparing two data sets, neither quantifies “the truth” (even when one is sub-
stantially more precise than the other). Both have associated errors, random and sys-
tematic, such that all that can be said is the products are consistent with each other.
Also, simply because two measurements purport to quantify the same measurand does
not mean they actually do. Weighting functions illustrate the difference in sensitivity be-
tween instruments.
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Consider cloud top height (CTH). The entire cloud emits thermal radiation, much of
which will be scattered or absorbed within the cloud. Radiation from the cloud observed
by a satellite corresponds to photons that found an unimpeded path to TOA. Hence,
a radiometer quantifies an average of the cloud’s temperature profile weighted by the
probability that a photon from that level can arrive at TOA. The distribution of the weight
is known as the weighting function, and is sketched in red in Fig. 6a. Due to the lack of
information about the vertical extent of the cloud, it is common to assume the cloud is
infinitely thin (e.g. Poulsen et al., 2012) and the measurand would be more accurately
described as the “effective cloud radiating height”.

A very simple model of this situation assumes that radiation increases linearly with
optical path 7 measured in the direction away from the observer. That radiance is at-
tenuated with the exponential of 7 so the observed radiance R can be approximated
as

R =ate™”, (7)

where a is some constant. This function has a maximum at 7 = 1. This result approx-
imately holds in more detailed calculations, such that a useful rule-of-thumb is that
a radiance can be thought of as emanating from the level of the atmosphere at unit
optical path.

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is commonly used
to validate CTH (e.g. Holz et al., 2008; Stengel et al., 2013). CALIOP measures the
backscatter from a pulsed laser beam as a function of height, which is predominatly
a function of the number of particles in the beam. CTH is identified by the rapid in-
crease in signal at the edge of the cloud as particle density increases. This results in
a weighting function that is substantially sharper and peaked at the physical top of the
cloud (black in Fig. 6).

A direct comparison of these two products will find that radiometer-retrieved CTH are
consistently lower than those from the lidar. To properly validate the satellite against the
lidar, it is necessary to use the satellite’s weighting function to calculate an “effective
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cloud radiating height” from the lidar profile. When measurements are compared, it
must be done on a common basis.

More formally, a weighting function describes the dependence of a measurement
on the underlying state. When the state chosen to describe a measurement is not an
orthogonal basis of the observed state, a variable in the state vector will not uniquely
determine an element of the true state. The relationship between the retrieved state
and true state is expressed by the averaging kernel A = 8x/0x, which satisfies

X-x,=A(X-x,)+€, (8)

where €’ represents the action of G on e.

Consider where x has two elements: the CTH and total optical thickness. In the lidar
retrieval, these two variables are independent; A4, iS @ unit matrix. In the radiometer
retrieval, the CTH retrieved is a function of the optical depth profile and A,,4 contains
off-diagonal elements. To illustrate, consider when an optically thin cloud (7 < 1) lies
above a thicker cloud (Fig. 6b). The lidar will identify CTH as the physical top of the
thin cloud but the radiometer will retrieve a CTH between the clouds. As the upper
cloud’s thickness increases, the weighting function is increasingly dominated by the
upper cloud. The retrieved CTH is dependent on the upper cloud’s optical thickness.
The averaging kernel would be

1- 0CTH oCTH

0 [Z]

Arpg = ! ! . (9)
0 1

The off-diagonal elements of the averaging kernel represent aspects of the state
that cannot be resolved by the chosen basis and forward model. Here, a two-layer
cloud cannot be properly represented when the basis only describes the properties of
a single-layer cloud. The characterisation of an averaging kernel may require the use
of an extended state vector and simulations with a more detailed model. (If the retrieval
had been posed over that extended state vector, the averaging kernel would have been
diagonal.)
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4.1.2 Comparing retrieved quantities

Retrievals will be compared over some collection of observations representing only
a subset of the realisable state vectors (e.g. a SST product compared to ship-based
measurements will only encapsulate the variation in SST over major shipping lanes
rather than globally). As systematic errors are circumstantial, this collection represents
only a sample of the complete distribution — just as the definition of a measurand frames
how its value can be understood and used, the scope of a validation frames the under-
standing of systematic errors.

Towards the aim of repeatability, validation should be performed in a manner such
that, if an additional source of data were introduced (e.g. a new instrument site or
satellite orbit), the conclusions would not be expected to change. In the highly common
case that there are insufficient data to achieve this, the scope of the validation should
be clearly outlined.

One would naively judge if two retrievals are consistent by considering,

X2 = (X1 = X2)T(S1 +S,) 7" (X1 = Xy), (10)

where S; is the covariance of a retrieved solution. Rodgers and Connor (2003) noted
that this does not apply for retrievals with differing averaging kernels, and developed an
alternative formalism that will be briefly summarised. The collection of states compared
is assumed to have a mean state x, with covariance S.. This could be the mean of
one of the data sets considered, or represent prior information, such as a climatology
from a previous measurement campaign.

Equation (8) linearises the retrieved state about the a priori state. The two retrievals
are unlikely to share an a priori. Hence, to consider compatible averaging kernels it is
necessary to translate both data sets to a common linearisation point, for which x, and
S, are suitable. The necessary translation is

X = X; = Xo + (A = )(Xz; = X,) (1)
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The difference between retrievals is then,
6=i1—225(A1—A2)(2—XC)+6{1—6’2, (13)

which has covariance,
S5 =(A1—A;)'S,(A; —Ay) +S; +S,. (14)
Thus, rather then Eq. (10), an appropriate comparison metric is

X2 = (X1 = X)'S;" (X4 — Xy). (15)

This is useful for the comparison of optimal retrievals and is widely used in the trace gas
community (e.g. Froidevaux et al., 2008; Wunch et al., 2010). It is less straightforward
but equally important for any comparison of data products. Different algorithms will have
distinct sensitivities to the same input information. Products from different sensors will
consider different inputs, which will react differently to the unconstrained atmospheric
states. Even where channels with similar wavelengths are used, they will have different
band-passes which subtly affect their sensitivity (weighting functions). For example,
the scattering properties of smaller droplets change more rapidly with wavelength than
those of larger droplets. Thus, in Fig. 6b, a second radiometer with a wider band could
have significantly different weighting functions depending on the droplet size in the
upper cloud (because it transmits differently at the edges of the band). If the averaging
kernel is not calculated, it is not possible to rigorously compare the data from different
sensors, even from the same algorithm.

When one product is of much higher resolution, such as the comparison against

CALIOP described in Sect. 4.1.1, it may be possible to transform it onto the basis of
the other via

X, =Xo+A1(Xo-X;), (16)
for which
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which has covariance,
S5 = (A1 —A1A-)S (A - AAy)  +S; +ASAT. (18)

As Eq. (11) casts each observation on the same linearisation point, these techniques
can be directly applied to the comparison of more than two instruments. When inde-
pendent observations are not available to externally validate data, one can compare
a product to model output provided the model is sampled as if viewed by a satellite.
The retrieval’s averaging kernel and weighting functions are necessary to translate the
physical variables quantified by the model (e.g. particle number density) into the ob-
served measurand.

4.1.3 Expected error envelopes

Expected error envelopes are a common means of presenting the result of a valida-
tion of, for example, aerosol optical depth 7 (e.g. Kahn et al., 2005; Levy et al., 2010).
The difference between the retrieved value and that reported by the Aerosol Robotic
Network (AERONET) approximates the “error” in the retrieval. The “expected error en-
velope” is the width of the observed distribution of “error” and is described like an
uncertainty. The value is an “envelope” because the distribution widens with increasing
retrieved optical depth, such that the final value is reported as +(a + b1), where a rep-
resents the minimum width of the “error” distribution and b represents the rate at which
it widens with increasing optical depth.

This is an efficient means of communicating the results of the validation against
AERONET and does convey a quantitative measure of the degree of certainty the data
producer has in their product. It is not, though, an estimation of uncertainty. Validation
techniques are neither universal (being dependant on the collocation criteria), internally
consistent (as external data are used), nor transferable (being representative of only
the conditions considered). Treating such values as an uncertainty has led to significant
difficulty integrating data from different sensors as global and local sources of error
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are disconnected, even when the envelopes are stratified by observing conditions and
retrieval assumptions (Holzer-Popp et al., 2014).

This application of a single uncertainty value for all retrievals conveys an incorrect
appreciation of the uncertainty to users as it implies well-constrained random and sys-
tematic components. Though stratification by relevant circumstances (e.g. over desert,
high aerosol loading) indicates that the error depends on the state observed, a single
number cannot usefully communicate the distribution of error in any particular mea-
surement. Only pixel-level estimates provide an uncertainty consistent with its widely
accepted definition and the presentation of ensembles, already used in the calculation
of these envelopes, can better represent the distribution of errors not quantified in that
estimate.

4.2 Internal validation

Internal validation is a less frequently discussed means to assess the precision and
consistency of measurements.

4.2.1 Self-consistency

Repeated observations of an unchanged target should sample the distribution of error,
such that a histogram of the observations should be Gaussian with a standard deviation
equivalent to the uncertainty. An opportunity for this type of repeated observation is
rare with satellite instruments. More common is the sampling of the same point in
successive orbits (often near the poles), assembling pairs of measurements of similar

(if not identical) atmospheric states (e.g. Lambert et al., 1996). If the first observation
is x4 with uncertainty o, and the second x, with o, then a histogram of
Xq—X
A= 17X (19)
2, 2
o5 +0,
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should have a mean of zero and a standard deviation of unity. The covariance of simul-
taneously retrieved quantities can be considered by evaluating Eq. (10) instead.
Atmospheric variation may increase the observed variability so a larger standard de-
viation is not questionable. A variance less than one usually indicates an underestima-
tion of the uncertainty. Significant departure from a Gaussian distribution is indicative
of unidentified systematic errors. If the variable is expected to be homogeneous across
a region, all observations there can be used to validate the uncertainty directly, as the
variance of the observations should be greater than the average of the uncertainties.

4.2.2 Against other algorithms

Using different forward model assumptions, statistical techniques, and/or filtering meth-
ods can produce results that may be consistent with themselves and external valida-
tion but not with each other. Differences between retrievals, in the absence of external
validation data or a programming error, indicate variations in the state within the uncon-
strained state space. They form an ensemble that illuminates where the formulation of
the problem is most relevant, highlighting where future research could be concentrated
to better represent the observations (Holzer-Popp et al., 2013). Belief that one repre-
sentation is “better’ than others independent of external validation is an expression of
a priori knowledge. Such knowledge can be very useful in identifying “unknown un-
knowns” in a retrieval, but it is important to appreciate that any constraint not made by
the data is an expression of a priori data, be it as formal as knowing that surface tem-
peratures are generally within 40 of 10°C or as simple as believing surface pressure
shouldn’t vary across a land—sea boundary.

5 Communication with users

Confidence in data is communicated to users through uncertainty estimates and quality
assurance statements. The quantification of uncertainty illustrates how new data relate
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to the existing body of knowledge, but there is also the user’s qualitative sense of the
“worth” of data. To what extent does it constrain the variables they are investigating?
When and where are the data most robust and when and where do they effectively
convey no information? What do they quantify that was not already known? The aims
of the user frame these questions. A detailed case study requires reliable uncertainty
estimates to incorporate varied measurements and understand the limitations of the
information provided but it is impractical for a twenty-year model climatology to consider
a single measurement, its uncertainty even more so.

Further, the “unknown unknowns” affecting satellite remote sensing data are not
completely indescribable. Information such as “results are often unreliable over
deserts” is still important to users, even if the uncertainty can’t be quantified. A di-
alogue with users is important in improving the understanding of data and receiving
feedback on that data for future improvement.

5.1 Error budget

The aim of an error budget is to classify the contributions to the uncertainty by their
source. At its simplest this may be in the form of a table, as suggested in Table 2. The
total uncertainty estimated in this way can be compared with that found through vali-
dation activities. Discrepancy between the two can potentially indicate an error source
has been over-looked.

5.2 Quality assurance

Quality assurance (or flagging) is a qualitative judgement of the performance of a re-
trieval and the suitability of that technique for processing the data. This complements
the uncertainty, whose calculation assumes that the forward model is appropriate to the
observed circumstances. Statistical distributions are unsuited to show when an algo-
rithm fails to converge, converges to an unphysical state, encounters incomprehensible
data, or observes circumstances beyond the ability of its model to describe. Provided it
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is described in the language of a statement of confidence, quality assurance provides
useful information.

The difficulty is that a simple flag is a coarse means of communication. For example,
MODIS aerosol products provide a data quality flag that takes values 0, 1, 2, or 3 to
describe increasing confidence in the retrieval method (Sect. 2.5, Remer et al., 2006).
This is widely used as a simple filter, rejecting data below some level. The level se-
lected varies widely and it neglects, for example, that all low magnitude retrievals have
confidence 1 due to the small signal. This will bias analyses to circumstances ideal
for the chosen formulation, which aren’t necessarily representative of the environment
(Sect. 3.4.2).

However, such filtering is a logical response to this presentation of information.
A more useful scheme would provide multiple separate flags (e.g. presence of cloud,
challenging surface conditions, failure to converge, etc) in a bit mask. When these are
properly documented they allow an attentive user to evaluate the impact of using data
degraded by a specific feature and the disinterested user may be inspired to briefly
consider the most appropriate flags for their purposes.

5.3 Algorithm maturity

Satellite remote sensing data have existed for several decades, but the retrieved geo-
physical quantities evolve as additional auxiliary data become available and new sci-
entific problems appear. For example, AVHRR measurements from 1978 are still re-
processed for climate studies (Stengel et al., 2013; Heidinger et al., 2014). Figure 5
outlines the interlinking cycles of algorithm and operational development. Figure 7 illus-
trates how the repeated refinement and validation of data is a fundamental expression
of the scientific method in data analysis. The cycle describes the ongoing conversation
through which measurements and algorithms are improved in response to their use
until a consensus is built that either:

1. the data set sufficiently addresses the needs of its users; or
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2. the maximal amount of information has been extracted from the measurement
and additional information is required to meet the needs of users.

The progress of a data set from initial conception to the achievement of one of these
goals is known as its maturity.

Bates and Barkstrom (2006) and Bates and Privette (2012) have outlined the system
maturity matrix as a standardised metric to quantify the maturity of a product, briefly
summarised in Table 3. It provides a means to track the development of an algorithm
and data set from initial concept to an operational setting, highlighting areas of a project
that could benefit from additional resources to achieve increased impact. The CORE-
CLIMAX project (Coordinating Earth observation data validation for re-analysis for cli-
mate services) has adapted and implemented such a scheme to rate the suitability of
current data products for use as a Climate Data Record (CDR), introduced in Table 4.
These matrices concentrate on goal 1 above, specifically the ability for “end-users to
realize the strengths and weaknesses of the dataset” (Work Package 2, 2013).

The appropriate presentation of data with thorough documentation and metadata
produced using a publicly available, consistently realised computer code is a desirable
aim. Such features should be included in any algorithm from inception to minimise
simple mistakes and the misunderstanding of data by users. However, the presence of
such features does not address the scientific quality or importance of the data.

The proposed metric simply counts the citations the data has received, disregarding
the variety of applications and their impact upon scientific understanding. Participation
in international data assessments works towards this aim, but only when there are
multiple means of observing or evaluating a measurand. These are not available for
many environmental variables and they should not be considered immature if they
make the best use of the information available (goal 2).

It is important that an inexperienced user should not misinterpret data with a high
maturity index as being more accurate or suited to a particular study. A mature data
set is one which is near the end of its development cycle in that it is agreed to be fit-
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6 Conclusions

An appreciation of the range of values consistent with a measurement is necessary to
properly apply and contextualise data. Three qualities were identified by the Guide to
Uncertainty in Measurement (Working Group 1, 2008) as necessary for an expression
of uncertainty to be useful:

— universality. all manners of observation can apply the techniques to calculate their
uncertainty;

— internal consistency: the calculation of uncertainty requires no information beyond
that used in the analysis;

— transferability: the uncertainty must be of use to a data user.

This paper classifies errors affecting satellite remote sensing data with five groups:

measurement. intrinsic variability in the observation;

parameter. errors propagated from auxiliary data;

approximation: explicit simplifications in the formulation of the forward model;

system: differences between the chosen description of the environment and real-
ity;

resolution: variability at scales smaller than that observed.

In the terminology of Thorne et al. (2005), the first two result in parametric errors and
the remainder structural errors.

Measurement and parameter errors are generally well represented by the traditional
propagation of random perturbations through an analysis. These are useful but only de-
scribe one aspect of the uncertainty — the “unknowns” that are known and quantifiable.
Approximation and system errors represent the inability of the analysis to describe the
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environment observed and are the dominant source of error in most passive satellite
remote sensing data (as it is not possible to constrain the complex behaviour of the
environment with a few TOA radiances). Data producers are aware of these additional
“unknowns”, such as the representation of the surface’s bi-directional reflectance, but
cannot quantify them in the manner required for traditional error propagation (i.e. they
are known, unquantifiable unknowns). Even well-constrained analyses will be affected
by system errors resulting from quality control, cloud filtering being the most com-
mon. Resolution errors describe the disconnect between what occurs in nature and
the means by which it is observed, primarily resulting from the instrument’s sampling.

The difficulty with the last three categories of error is that they can be highly non-
linear — their magnitude and nature depend upon the state observed and the ability
of the forward model to describe it. Propagation of errors assumes that the equations
used are accurate and that errors affect them linearly. Uncertainties currently reported
with satellite remote sensing data neither represent the actual (non-linear) distribution
of errors nor the full range of information known about the errors.

This can be addressed in various ways. Firstly, uncertainty estimates in satellite re-
mote sensing data must be presented at pixel level. Pervasive quantifications misrep-
resent the dependence of error upon state and rely on external information. While
pixel-level estimates will not represent the impact of unquantified unknowns, it is im-
portant that uncertainty be presented in a context that represents the data producer’s
confidence in and understanding of their data.

Ensemble techniques can be used to represent unquantifiable unknowns. The un-
derconstrained nature of many satellite observations means that multiple realisations
of a data set that are consistent with measurements can be derived by using conflicting
descriptions of the environment, such as assumptions of particle microphysical prop-
erties or differing calibration coefficients. In the absence of a priori constraints, each
of these realisations is feasible and should be presented together. This is common
practice in the climate modelling community and the satellite remote sensing commu-
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nity should capitalise on user’s experience to better communicate the uncertainty in
products.

The manner in which a measurand is defined affects both the sources of error that
must be considered (e.g. resolution errors) and the manner in which the data must
be compared with other measurements. In an underconstrained problem, it is often not
possible to report a value that is uniquely constrained by those conditions (i.e. the state
vector is not an orthogonal basis of the observed conditions). This can result in the re-
trieved value being sensitive to multiple features of the environment, as quantified by
the averaging kernel. When comparing data sets, it is important to ensure that equiva-
lent quantities are being compared or biases will be observed that are a function of the
system definition rather than an error in the retrieval. The necessary transforms were
outlined in Rodgers and Connor (2003).

As not all errors can be quantified, there is also qualitative information necessary to
appreciate the applicability of data and, as a data set evolves, it is important to assess
both the degree to which it represents a scientific advancement and to which it satisfies
the needs of its users. This information can be conveyed through product user guides,
validation studies, quality assurance flags, and/or measures of a retrieval system’s ma-
turity. It is both important that this information is readily available to users and that it
is communicated in the language of a statement of confidence. Continuous interaction
with users will be necessary to improve these reports to ensure they communicate the
desired information. Of particular importance is

— An error budget outlining the quantified sources of error;

— A description of the available quality control information and its physical meaning
to enable users to apply it in an educated fashion;

— Known weaknesses of the data that are not represented by the uncertainty.

Evaluating the quality of an algorithm using existing metrics limits the ability of the

satellite remote sensing community to communicate their understanding of the un-

certainties in their products to users in an efficient or effective manner. Without that
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dialogue, users cannot appropriately use data and cannot feedback to data producers
to improve it. The hope is that by representing uncertainties in satellite remote sensing
data through ensembles, understanding of the limitations of the data will increase, high-
lighting areas for future research. Through continual communication among the entire
scientific community, unknown unknowns can become known and, eventually, make
the usage of ensembles unnecessary as understanding of the environment converges
upon the truth.
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Table 1. Satellite data processing levels, adapted from Chase (1986).

Level O
Level 1A

Level 1B

Level 2

Level 3

Reconstructed, unprocessed instrument data at full resolution.

Reconstructed, unprocessed instrument data, time-referenced
and annotated with ancillary information such as radiometric and
geometric calibration coefficients and geolocation parameters.
Data may be at full resolution or an average over some retrieval
area.

Level 1A data that has been converted to physical units
(e.g. brightness temperature rather than voltage). Not all instru-
ments will have a Level 1B equivalent.

Derived environmental variables (e.g. ocean wave height, soil
moisture) at the same resolution and location as the Level 1
source data.

Variables mapped onto uniform space-time grid scales, usually
with some corrections for completeness and consistency (e.g. in-
terpolation of missing points, interlacing multiple orbits).
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Table 2. Example of an error budget.

Uncertainty ~ Uncertainty  Bias Sensitivity Random Systematic
Term Uncertainty Uncertainty
ox. ox. ox
Measurement Y4 oy, ﬁy1 a_y: a—y:cry‘ [‘)_y: Ve
elements .
2 il il
Parameter by 0y, 5y, o 55-0b, 55-6b,
elements
Total Uncertainty Add above Add above
values in values
quadrature
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Table 3. Levels of system maturity, as defined in Bates and Barkstrom (2006).

Level 1

Level 2

Level 3

Level 4

Level 5

Initial Research

Managed Development

Validated

Certified Validated
(a preponderance of the
evidence)

Benchmark (beyond
a reasonable doubt)

Results are based on environmental data records or a research
satellite mission. Time series is short (usually less than 10 years).
Validation is not yet complete.

Initial validation complete with peer-reviewed journal paper(s)
published, etc.

Continuous validation for greater than 10 years. Data from multi-
ple investigators with understood differences in results. Provision-
ally used in assessments and societal benefit areas with positive
impact demonstrated.

Full provenance demonstrated; fully compliant with national and
international standards; regularly used for identified societal ben-
efit areas.

Variable critical to defining long-term climate change that is ob-
served on the global scale. A measurement that is tied to ir-
refutable standards, usually with a broad laboratory base. Ob-
servation strategy designed to reveal systematic errors through
independent cross-checks, open inspection, and continuous in-
terrogation. Limited number of carefully selected observables,
with highly confined objectives defining (a) climate forcings, (b)
climate response.
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Table 4. Excerpts of the system maturity matrix defined by Work Package 2 (2013), available
at http://www.coreclimax.eu/sites/coreclimax.itc.nl/files/documents/Deliverables/WP_Reports/

Deliverable-D222-CORECLIMAX-Maturity_Matrix.xIsx.

Category Maturity 1-2 Maturity 3—4 Maturity 5-6
Software readiness  Conceptual Portable and numerically repro- Turnkey system fully compliant
development ducable code with draft user with coding standards

manual

Metadata None Standardised formatting suffi- Regularly updated metadata,
cient to use and understand fully compliant with international
data and trace data heritage standards

User Limited scientific Published methodology with Publications outlining product

documentation

Uncertainty
characterisation

Public access
and feedback

Usage

description of the
methodology available
from PI

None

Restricted availability
through Pl

None

product descriptions and vali-
dation exercises available from
Pl

Quantitative estimates of uncer-
tainty provided using standard
nomenclature and procedures to
establish Sl traceability

Version-controlled, documented
computer codes  available
through PI

Product use cited in literature;
societal and economic benefits
discussed

updates and comprehensive
validation (including uncertainty
information)

Data provider has participated
in multiple international assess-
ments, incorporated feedback
into the product development cy-
cle, and quantified temporal and
spatial error covariances

Source code available to pub-
lic with capability for continuous
data provisions

Product and its applications
have become the reference in
multiple research fields with
demonstrated influence on pol-
icy making
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Figure 1. An illustration of error and uncertainty. The error in a measurement (purple arrow) is
the difference between the true value of the measurand (solid blue) and the value measured
(dashed red). The black line shows the frequency distribution of values that would be obtained
if the measurement were infinitely repeated, referred to as the distribution of error. (a) A con-
ventional random error. The uncertainty (green arrow) characterises the distribution of error by
its width. (b) An error with a systematic component. This cannot be characterised with a single
value.
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> > >
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Figure 2. Distortion of the distribution of error for different selections of measurand when ob-
serving a cloud. (Non-linearities exaggerated for illustration.) (a) Measured TOA radiance suf-
fers random errors, which have a symmetric distribution. (b) Transformation with the Planck
function warps the distribution when reporting cloud top temperature. (¢) These are further
distorted when cloud top pressure is calculated. An additional error (grey; not to scale) is intro-
duced by the auxiliary data used in that calculation, giving an irregular total distribution (black).
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Figure 3. An ensemble of forward models for the volume of a bucket (x axis) as a function
of its mass (y axis). A third parameter, the bucket’s height, is not measured and so must be
assumed. Its impact is shown over five slices of the z axis. Solid, dotted, and dashed lines
denote cylindrical, hemispherical, and conical buckets respectively. The material is assumed to

have thickness 1 mm and density 2.7gcm'3.
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Figure 4. One-dimensional representation of a retrieval considering multiple systems (realisa-
tions of the forward model that do not necessarily retrieve the same variable). For a system,
the retrieved state is the minimum of its cost function (indicated by a circle). The state with
globally minimal cost (across all systems) is a posteriori taken as the best representation of the
observed environment.
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Figure 5. The cycle of retrieval development. The initial formulation and algorithm are repeat-
edly revised in light of internal validation activities. When consistent results are achieved, an
external validation is performed (and published) to begin the operational cycle, where data are
generated and disseminated. The application and critique of the data by the scientific com-
munity then feeds into further refinement of the algorithm (or entirely new algorithms). The
development and operational cycles continue independent of the larger cycle but over time
operations will increasingly dominate resources as the product becomes increasingly fit for
purpose.

8560

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

AMTD
8, 8509-8562, 2015

Uncertainty
estimation in satellite
remote sensing data

A. C. Povey and
R. G. Grainger

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/8509/2015/amtd-8-8509-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/8509/2015/amtd-8-8509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

AMTD
8, 8509-8562, 2015

Height 4 Weight

(a) >

Jaded uoissnasiq

Uncertainty
estimation in satellite
remote sensing data

A. C. Povey and
R. G. Grainger

Height A Weight
(b) >

Jaded uoissnasiq

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Jaded uoissnasiq

Back Close

Figure 6. Schematic of the weighting functions for CTH for an infrared radiometer (red) and lidar
(black), with dashed lines denoting the value retrieved. (a) For a thick cloud, the radiometer is
most sensitive to the region one optical depth into the cloud while the lidar detects the physical
cloud top. (b) The lidar’s sensitivity is unchanged when a thin cloud lies over a thicker one, but
the radiometer observes both clouds, resulting in an unphysical CTH somewhere between the
two.
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